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Glaucoma is a leading cause of blindness worldwide. The disease is characterized by a degeneration of the optic
nerve, which is usually associated with elevated intraocular pressure. The common form of adult-onset primary
open-angle glaucoma is inherited as a complex trait, whereas the rarer early-onset juvenile open-angle glaucoma
(JOAG) exhibits autosomal dominant inheritance. Of all cases of JOAG, ∼10%–20% are caused by mutations in
the myocilin gene. We have identified 25 pedigrees that are affected with typical JOAG and that demonstrate
autosomal dominant inheritance. We sequenced the myocilin gene in probands from each family and found mutations
in 8% of this population. To identify novel genes responsible for JOAG, we used families that did not have myocilin
mutations for a genomewide screen. Markers located on chromosomes 9q22 and 20p12 showed evidence for
linkage, identifying two novel loci for early-onset open-angle glaucoma.

Glaucoma is the third leading cause of blindness in the
United States and is also a leading cause of blindness
worldwide (Dimitrov et al. 2003). The disease is char-
acterized by a degeneration of the optic nerve, which is
usually associated with elevated intraocular pressure.
The increase in intraocular pressure is probably caused
by a reduction in outflow of aqueous humor through
the trabecular outflow pathways; however, the molecular
mechanisms responsible for normal aqueous humor out-
flow and impaired outflow in glaucoma are not known
(Lutjen-Drecoll et al. 2001). The degeneration of the
optic nerve is the result of the loss of individual retinal
ganglion cells. The ganglion cells die by an apoptotic
mechanism, although the details of this process are not
well understood (Farkas and Grosskreutz 2001). More-
over, the relationship between the elevation of intraoc-
ular pressure and the apoptosis of retinal ganglion cells
is not well defined.

A family history of glaucoma has long been recognized
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as an important risk factor for the disease, and both
Mendelian and non-Mendelian forms of glaucoma have
been identified. The common adult-onset primary open-
angle glaucoma (POAG) is inherited as a complex trait,
whereas the rarer early-onset POAG exhibits autosomal
dominant inheritance (Wiggs et al. 1996). Adult-onset
POAG is the most common type of glaucoma, and sub-
stantial efforts have gone into understanding, diagnos-
ing, and treating the disease. However, the successful
identification of the genes responsible for complex het-
erogeneous disorders such as POAG requires a multi-
pronged study design and very large, well-defined data
sets of affected individuals (Wiggs et al. 2000; Schmidt
et al. 2002). Despite these difficulties, genetic techniques
for complex disorders have proven successful and are
one path to the desired genes. Another path is to study
simple Mendelian forms of the disease with defined ge-
netic models resulting from defects in a single underlying
gene. Mendelian forms of a disease are often rare, but
the discovery of the responsible gene can provide infor-
mation that is applicable to other, more common forms
of the disease. Mutant alleles of genes responsible for
rare forms of a disease may be one of several factors
leading to the development of a more common complex
disease.

POAG that develops before the age of 40 years,
known as “juvenile-onset POAG” (JOAG) (Wiggs et al.
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Table 1

Markers with Two-Point LOD Scores 11.0

MARKER

LOCATION

(cM)

TWO-POINT LOD SCORE FOR v

.00 .05 .10 .15 .20 .30 .40

D3S1294 210 �12.30 �.99 .44 .92 1.01 .70 .26
D5S617 95 �2.79 .60 1.00 1.03 .93 .58 .22
D9S1803 101 �3.67 .63 1.13 1.24 1.20 .84 .37
D12S159 45 �2.86 .38 .89 1.00 .92 .58 .21
D20S189 34 �3.63 .88 1.30 1.29 1.13 .67 .26
D20S104 37 �6.70 .28 1.03 1.17 1.08 .64 .19

NOTE.—Two-point LOD scores 11.0 are shown in bold italics.

Figure 1 Multipoint linkage analysis. HLOD values were used for multipoint calculations performed by use of the computer program
Allegro. The deCODE genetic map was used for the marker locations (Kong et al. 2002).

1995), is a rare disorder that results in high intraocular
pressure, usually requiring surgical therapy. JOAG is
typically inherited as an autosomal dominant trait, and
one gene, myocilin (MYOC [MIM 601652]), has been
associated with this condition (Adam et al. 1997; Stone
et al. 1997; Richards et al. 1998; Wiggs et al. 1998).
MYOC was originally identified as a glucocorticoid re-
sponse protein in cultured human trabecular meshwork
cells (Nguyen et al. 1998). The gene is comprised of three
exons, and missense mutations associated with JOAG
have been found primarily in the third exon that codes
for a protein domain with homology to olfactomedin
(Rozsa et al. 1998; Fingert et al. 1999; Alward et al.
2002). The function of the normal protein in aqueous
humor outflow is not currently known. Several studies
have indicated that the mutant forms are associated with
a gain of function or dominant negative effect (Kim et
al. 2001; Wiggs and Vollrath 2001; Joe et al. 2003).

MYOC mutations may contribute to both JOAG and

POAG. The MYOC DNA sequence variants found in
patients with glaucoma are associated with a range of
disease severity, with some missense mutations causing
very severe early-onset disease with autosomal dominant
inheritance, whereas other missense mutations and a
common truncating mutation (GLN368STOP) are as-
sociated with late-onset POAG (Allingham et al. 1998;
Shimizu et al. 2000; Mackey et al. 2003). Mutations in
MYOC occur in 3%–5% of patients with the adult-
onset disease, and the adult-onset mutations—in partic-
ular, the GLN368STOP sequence variant—are associ-
ated with disease risk and exhibit variable penetrance
(Craig et al. 2001; Graul et al. 2002). The MYOC mu-
tations that cause the early-onset disease are highly pen-
etrant, with ∼90%–95% of individuals carrying muta-
tions showing evidence of disease by the age of 40 years
(Wiggs et al. 1998; de Vasconcellos et al. 2003).

Most cases of JOAG (80%) cannot be explained by
mutations in the MYOC gene (Bruttini et al. 2003). We
have identified a study cohort of families affected with
typical early-onset JOAG demonstrating autosomal
dominant inheritance. We sequenced the MYOC gene
in the probands from each of these families and found
mutations in 8% of this study population (Wiggs et al.
1998). To identify novel genes responsible for the dis-
ease, we have used the families that did not have MYOC
mutations for a genomewide screen.

For this study, we identified 25 pedigrees affected by
JOAG that consisted of a minimum of three affected
individuals in two generations (198 total individuals,
105 affected individuals). In this population, juvenile



Figure 2 Haplotypes for selected pedigrees using markers from chromosome 9 (pedigrees 25 and 26) and chromosome 20 (pedigree 52).
Segregating haplotypes are shown in the rectangles. Marker locations are according to Kong et al. (2002).
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glaucoma is diagnosed if patients display the following
characteristics: onset of the disease before age 35 years,
intraocular pressure 122 mmHg in both eyes, glauco-
matous optic-nerve damage in both eyes, and visual-field
loss in at least one eye. Patients with clinical findings
consistent with anterior-segment-dysgenesis syndromes
were not included in this study. A proband from each
pedigree had been previously screened for MYOC mu-
tations. This study was approved by the Massachusetts
Eye and Ear Infirmary institutional review board, and
informed consent was obtained from individuals partic-
ipating in the study.

Blood samples were collected from consenting family
members, and genomic DNA was prepared from lym-
phocyte pellets. Initially, 238 microsatellite repeat mark-
ers spanning the human genome at ∼10-cM intervals
were analyzed. Marker locations were based on the
deCODE genetic map (Kong et al. 2002). Genotyping
was performed by use of PCR amplification with incor-
poration of P32 and visualization of alleles after auto-
radiography or by PCR amplification without radioac-
tivity, with visualization of alleles by a florescent imager
after staining with SYBR Green dye. Marker-allele sizes
and frequencies were obtained from the database of the
Centre d’Etude du Polymorphisme Humain (CEPH) or
the Genome Database. All families were genotyped by
use of a single method for a given marker.

The two-point and multipoint LOD scores, which as-

sumed an autosomal dominant model, were calculated
by use of the Allegro software package (Gudbjartsson
et al. 2000), initially assuming homogeneity and then
allowing for genetic heterogeneity (HLOD). For the ge-
nomic-screening analyses, only affected pedigree mem-
bers and spouses were included. For the follow-up stud-
ies, unaffected individuals were included.

Markers located in five regions on chromosomes 3, 5,
9, 12, and 20 demonstrated initially interesting results
(two-point LOD score 11.0) (table 1). The results of the
complete genome scan are provided as an online-only
supplement. Flanking microsatellite markers that are lo-
cated ∼5 cM on either side of those generating suggestive
results were selected for further analyses using the entire
pedigree set, including unaffected individuals who are
without evidence of the disease by the age of 40 years.
Markers flanking the peak markers on chromosomes 9
and 20 continued to show interesting results with two-
point LOD scores 12.0, assuming homogeneity. An in-
crease in LOD scores in both regions was seen when the
calculations were repeated, allowing for genetic heter-
ogeneity (alpha p 0.9) (table 2). Multipoint analyses
were performed using the HLOD values for all markers
in each suggestive region. Multipoint analyses of chro-
mosomes 9 and 20 resulted in higher HLOD scores for
markers located in these regions, with a peak score of
4 on chromosome 9 between markers D9S1803 and
D9S196, and a peak score of 4 on chromosome 20 be-



1318 Am. J. Hum. Genet. 74:1314–1320, 2004

Table 2

Two-Point LOD Scores for Markers Located in Peak Regions on
Chromosomes 9 and 20

CHROMOSOME

AND MARKER

LOCATION

(cM)

TWO-POINT LOD SCORE,
ASSUMING

Homogeneity Heterogeneity

Chromosome 9:
D9S1781 95 1.31 1.70
D9S1803 96 2.10 2.20
D9S196 97 2.40 2.70
D9S271 105 1.10 1.20

Chromosome 20:
D20S879 28 0.70 0.90
D20S894 32 2.10 2.90
D20S189 34 2.37 3.15
D20S104 37 2.10 2.33

NOTE.—Markers with peak two-point LOD scores are shown
in bold italics.

Figure 3 Recombination events defining the chromosome 9 and chromosome 20 regions. Solid rectangles indicate the nonrecombinant
region for each individual. The critical recombination events are shown by horizontal lines. Each individual in the chromosome 9 region is
affected (unaffected individuals did not have relevant recombination events in this region). In the chromosome 20 region, individuals 52 II-1
and 52 III-1 are affected, whereas individuals 52 III-3 and 52 III-5 are unaffected. When only the affected recombinant individuals are used,
a critical region that extends from markers D20S846 to D20S891 (48 cM, 39 Mb) can be identified (indicated by the dashed arrow).

tween markers D20S189 and D20S104 (fig. 1). Of the
25 families originally enrolled in this study, 15 were of
sufficient size and pedigree structure that haplotypes
could be constructed by use of markers located within
these regions. Of these 15 families, 7 families have hap-
lotypes consistent with linkage to the chromosome 9
region, 5 families have haplotypes consistent with link-
age to the chromosome 20 region, and 3 families have
haplotypes consistent with linkage to both regions. The
haplotypes for pedigree 26 (chromosome 9), pedigree 25
(chromosome 9), and pedigree 52 (chromosome 20) are
shown in figure 2. Critical recombinants identify a 9-
cM region on chromosome 9 between markers D9S1841
and D9S271 and a 19-cM region on chromosome 20
between markers D20S894 and D20S878 (fig. 3).

These results provide evidence for two new loci con-
taining genes responsible for JOAG. Although these
regions are of considerable size, the annotated human
genome sequence makes it possible to compile a com-
prehensive list of candidate genes located in each region.
By use of a variety of databases (Stanford Microarray
Database, NEIBank, and UniGene), we have identified
15 genes in the chromosome 9 region and 23 genes in
the chromosome 20 region that have significant ocular
expression. We are currently sequencing these genes in
affected family members.

The VSX gene (MIM 605020) is one of the interesting
candidate genes located in the chromosome 20 region.
Mutations in VSX have been shown to be responsible

for some cases of posterior polymorphous dystrophy, a
disease that can be associated with early-onset glaucoma
(Heon et al. 2002). We have sequenced this gene and
determined that DNA sequence variants are not present
in the patients with early-onset glaucoma in our popu-
lation. Other interesting candidate genes located in the
chromosome 20 region are currently under investigation.

The results of this study support the hypothesis that
multiple genes can give rise to JOAG. The identification
of genes and protein products responsible for JOAG will
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help define the underlying biochemical abnormalities re-
sponsible for the disease. A better understanding of the
underlying molecular defects, as well as the development
of transgenic animal models based on the predisposing
gene defects, may lead to more effective and specific
therapies. Allelic variants of early-onset–glaucoma genes
may also contribute to the susceptibility of adult-onset
POAG and/or may suggest proteins that can contribute
to this devastating disease. Defining gene defects that
predispose to adult-onset glaucoma will help identify
individuals at risk for the disease, thus allowing for ap-
propriate treatment and prevention of blindness.
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